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Nonuniversality and Continuity of the Critical Covered
Volume Fraction in Continuum Percolation
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We establish, using mathematically rigorous methods, that the critical covered
volume fraction (CVF) for a continuum percolation model with overlapping
balls of random sizes is not a universal constant independent of the distribution
of the size of the balls. In addition, we show that the critical CVF is a
continuous function of the distribution of the radius random variable, in the
sense that if a sequence of random variables converges weakly to some random
variable, then the critical CVF based on these random variables converges to
the critical CVF of the limiting random variable.
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1. INTRODUCTION AND RESULTS

In the literature on continuum percolation, two related parameters have
been studied. The first is the covered volume fraction (CVF), which has
been studied primarily by physicists (Scher and Zallen,""® Pike and
Seager,® Kersetz and Vicsek,'” Gawlinski and Redner,'"’ Phani and
Dhar'™), while the other is the intensity of the underlying point process,
studied primarily by mathematicians (Hall,'*' Menshikov,'®’ Roy'’). The
results obtained in the first set of work is limited in that the results are
primarily based on Monte Carlo simulations, while the latter set of work
is limited in that the results primarily pertain to the existence of the
percolating regime in a setting where the balls are random but of a given
fixed distribution: In this paper we shall be concerned with two aspects of
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the CVF at criticality. First, we settle a question raised in the first set of
work regarding the universality of the critical CVF by methods established
in the second set of work. Second, we obtain a continuity result concerning
the critical CVF when the radii converge weakly.

The model of continuum percolation consists of overlapping d-dimen-
sional balls each of which are of random radius and are centred in a
‘uniform manner’ on R¢; more precisely, for every i=1, 2,.., each point x;
of a Poisson point process X of intensity 2 on R in the center of a ball
S(x;, p;) of radius p;, where p,, p,,.. is an independent and identically
distributed sequence of random variables which are all independent of the
underlying Poisson process. Let p denote a random variable whose dis-
tribution is independent of X and {p,, i> 1} and is identical to that of p,.
We denote this model by the triple (X, 4, p). The probability measure
governing this process will be denoted by P;, and E, , is the corre-
sponding expectation operator. The part of the space which is covered by
at least one ball will be denoted by C and the uncovered (vacant) part
by V.

In a realization of this model let x,,..,, x,, be all the points in the unit
box [0, 1] and ry,.., r, the associated radii of these balls at these points.
Consider the quantity Y, _, ., 7,r¢, where n, denotes the d-dimensional
volume of a ball of unit radius. This corresponds to the sum of the volumes
of each of the balls centered in the box [0, 1]% It can be easily seen that
the expected sum of the volumes of each of the balls centered in the unit
box [0,11¢ is in,E; ,p“. This quantity is called the volume density of
(X, 4, p). By the invariance properties of the model it is obvious that the
volume density is unaffected if instead of [0, 1]¢ we chose a different unit
box in RY The CVF is the quantity 1—exp(—An,E, ,p“), which
corresponds to the expected volume in a unit box covered by balls (see
Hall,”® p. 128). A simple argument using the ergodic theorem yields that if
B, is the box [ —n, n] the limit

1
lim W vol(B,n C)

exists and is equal to 1 —exp(—An, E{ p“)=CVF, where vol(4) denotes
the d-dimensional volume of a region 4 = R“.

Note that if the radius random variable p is such that E,~__,,p"= 00,
then for every 4> 0, the CVF equals 1. As such the whole space is covered
in this case. To rule out such instances and to be able apply the known
mathematical results of this model we restrict ourselves to the case where
p has bounded support.

For x e R let C(x), the cluster of x, denote the connected component
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of C which contains x. The cluster of the origin is denoted by C(0) and for
A S RY C(4) denotes the union of all components in C which intersect A.
Clearly, for a fixed p, if 4, <4, then

P;, ,(C(0)is unbounded) < P;, ,(C(0) is unbounded)

A2.p

This allows us to define the critical intensity as
Ap) :=inf{A: P, ,(C(0)is unbounded) >0}

The critical volume density and the critical CVF are defined as
A myE; ,p?and A.(p):=1—exp(—A.n,E, ,p“), respectively.

It is obvious that if p, and p, are such that p,=r, and p,=r, for
some fixed reals 0 <r, <r, < 00, we have

Adri) :=24p) 2 Adlps) =1 A.(r,)
In addition, a simple rescaling argument (Zuev and Sidorenko‘'!’) yields
Ar)rf=Ary)ré (1.1)
Clearly, (1.1) implies that

Afry) =Ap)=ALpr)=:A(r)) =24, (say) (1.2)

The equality in (1.2) suggested the conjecture (Kersetz and Vicsek'?') that,
for all random variables p with bounded support, 4.(p) is a constant
independent of p. Phani and Dhar'”’ gave a heuristic argument which
showed that the comjecture is false, and supported their argument with
Monte Carlo simulations.

In this paper we prove the following:

Theorem 1.1. There exists a random variable p taking values ¢ and
b with probability p and 1 — p, respectively, where a#b, a>0, b>0, and
0 < p <1 such that

Ap)> A, (1.3)

where, as in (1.2), A, denotes the critical CVF of a model with balls of
fixed radius.

Our second result is concerned with the continuity of 4.(p,) when the
sequence {p,} converges weakly:

Theorem 1.2. Let p, and p be random variables such that for some
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R>0 we have 0<p<Rand 0<p, <R as. for all k> 1. If p,=p, then
A (p.)— A.(p), where ‘=’ denotes weak convergence.

In combination with Theorem 1.1, this result shows that for a whole
class of distributions of p, inequality (1.3) is valid. Also, it states that
simulation methods cannot distinguish between two models very ‘close’ to
each other. In Section 3 we obtain further results on bounds on the rate of
convergence of the critical intensities.

Our proof of Theorem 1.1 in Section 2 strongly suggests that whenever
p is not a constant a.s., then A (p)> 4,. However, we do not have a proof
of this inequality.

Finally, denote the critical volume density of a model with fixed-size
balls by ¥VD,.. Our proof of Theorem 1.1 also shows that for any ¢>0, it
is possible to construct a model such that the critical volume density of this
model is between 2V D_.—¢ and 2V D_. This justifies a claim made by Phani
and Dhar."”

For ease of description we present the proofs in the two-dimensional
case; all our arguments, however, are valid in a higher-dimensional setting.

2. PROOF OF THEOREM 1.1

Let O0<r,<r,< o0 be arbitrary positive numbers. Fix, ¢ 6 >0 such
that

(2—e—8)A, —(1—g)(1—8)42> 4, (2.1)

The expression in (2.1) will become clear in a moment. Next we choose
Ay <Ar,) such that the CVF of (X, 4,,r,) is equal to (1 —¢&)A4,. Also
choose 4; < A.(r,) such that the CVF of (X, 4,,r,})=(1—0)A,. Note that
both processes are subcritical. Next we consider the superposition of these
processes. We claim that the CVF of this superposition is strictly larger
than A4,. To see this, note that it follows from Fubini’s theorem and the
ergodic theorem that the CVF of a process is equal to the probability that
the origin (or any other point, for that matter) is covered. But by inde-
pendence, the probability that the origin is covered in the superposition of
the two processes is just the left-hand side of (2.1) and the claim follows.
Now consider the process (X, 4,, r,) and scale it by a factor a <1 to
obtain a process which is equivalent in law to (X, a™24,, ar,). In other
words, if the occurrences of (X, 4,,r,) are the points {x,, x,,..}, with
associated balls of radius r,, then the occurrences of the scaled model are
the points {ox,, ax,,..} with associated balls of radius ar,. (Note that in
this way we couple all processes together for a<1.) The CVF of
(X, a2, ar,) does not depend on . Hence it follows from (2.1) and the



Critical Volume Fraction in Continuum Percolation 127

reasoning above that the CVF of the superposition of (X, 4, r,) and
(X, a2, ar,) is strictly larger than 4_. Our goal now is to show that this
superposition is subcritical for « sufficiently small.

We need to review some notions from the literature. First, we define
crossing probabilities. For k, k,>0, let a((k,, k), 4, p) be the probability
—under the law P, ,—that the set ([0, £,]x [0, k,])n C contains a con-
nected component which intersects both {0} x [0, &,] and {k,} x [0, k,].
We call such a component an LR (left-right) occupied crossing. The
critical intensity corresponding to crossing probabilities is defined as

As(p)=inf{4; lim sup a((n, 3n), 4, p)>0}

It is shown in Menshikov'®’ (see also Roy!®’) that if p has bounded
support, then

As(p)=4p) (2.2)

Furthermore, the following result is a special case of Lemma 3.2 in Roy®:

Lemma 2.1. Consider the model (X, 4, p), where O0<p<R as.
for some R>0. If for some N>R and k< (25¢)~ "% we have
o((N, 3N}, 4, p} <k, then

P//I(d(C(O)) Zb) < Cle~C1b

for all b> 0, where C, and C, are positive constants independent of b and
where d(-) denotes the diameter of a set.

Remark. For arbitrary dimension d we mneed to have
o((N, 3N, 3N,.., 3N), 4, p)<x and k< (1/2d)(5%)~ " for the conclusion
of the above lemma to be valid. Here o((N, 3N, 3N,..,3N), 4 p)
is the obvious notation for the crossing probability of the rectangle
[0, N]x[0,3N]x --- x [0, 3N] in the shortest direction.

All these notions were originally defined in discrete percolation.
For an account of that, we refer to Kesten."” The results above are the
continuous analogs of these results in discrete percolation.

Now we fix a k>0 as in Lemma 2.1. Since 4, < 2.{r,}, {(2.2) implies
that A, < A4(r,) and we can thus find a number N so large that

a((N, 3N), 2, 15) < 1ix
If there is no occupied LR crossing in [0, NJx [0, 3N], then there

is a vacant TB crossing (TB stands for top to bottom) defined in
the obvious way. In other words, there is at least one component in
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([0, N]x[0,3N])n V intersecting the top and bottom sides of the rec-
tangle, where ¥ is the uncovered region as introduced earlier. We can order
these components from left to right, say, and the leftmost component is
called W. Only finitely many balls intersect [0, N]x [0,3N] as. and
hence the boundary dW of W has only finitely many components a.s.
Hence, for 7 large enough, the event E, := { W exists and all components
of 6W nint([0, N] x [0, 3N]) have distance at least n~' from each other}
has probability at least 1 — k. We fix n, such that

P, (E)>1—1Lk (23)

;.g_.r:(

Next we turn again to (X, 4,, r,). Since 1, <4.(r,), it follows from (2.2),
Lemma 2.1, and an application of the FKG inequality that for
B =[~-117%

P nld(C(B,)2b) < Cye™

for all >0, where C; and C, are again positive constants independent
of b. Scaling down by a factor a <1 yields

Pu’z}.I,an(d(C(Ba)) > ab) S C3e_c‘h

where B,=[—a,«]> Taking a=m~' for some large integer m, and
b={(2any) ' [with ng as in (2. 3)], we obtain

Ptz (A(C(B,, 1)) = (2ng) ') < Cye = om0 (24)

Now we combine the conclusions obtained in (2.3) and (2.4). Divide
[0, N]x [0, 3N] into 3N2m? boxes with side length m~', and denote these
boxes by B', B%.., B*¥. Then, from (2.4), the probability that in the
model (X, m?A,, m~'r,) the event

INIm?

Fri= | {d(C(B'))= (o)~}

ng ° T
i=1

occurs has probability at most 3N?m*Cse ~<*"/?™, which tends to zero for
m — co. We now fix an m, such that this probability is at most 3x. If E,,,
occurs in (X, 4,,r,) and F,° does not occur in (X, myd,, my'ry), then it
follows that there is no occupied LR crossing in [0, N]x [0, 3N] in the
superposition of the two processes. This superposition is in fact the model
(X, A, +mi2,, p), where p is a random variable taking values r, and mg 'r,
with probability A,(mgd,+4,)~" and mji,(m3A, +4,)~", respectively.
Hence, the probability of an occupied LR crossing of [0, N]x [0, 3N] in
(X, A, +m3d,, p) is at most 3x+ k <k. According to Lemma 2.1, this
implies that this model is subcritical and this proves the theorem. |
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3. PROOF OF THEOREM 1.2

If p,=>p, then the boundedness of the radii implies that also the
expected volume of the balls converges. It is therefore enough to prove that
AApy)— Ap), when k — oo and this is what we shall prove.

Our strategy will be to approximate the radii by radii which take only
finitely many values. Thus we first investigate the case in which both p, and
p take only finitely many values.

Lemma 3.1. Let O0<a,<a,< --- <a,<o and let p and p’ be
random variables taking value a; with probability p; and p;, respectively.
Suppose that there exist 1 <j</<n such that p,=p; for all i#j,/ and
where p, and p; are both positive. Then,

Az‘(al)
Ap)—Ap) € ——"—1|p,— P,
[4.(p) (p') mm{p,,p,}lp’ p;l

Proof. Suppose first that p;> p;. A simple coupling argument then
shows that

i) =z i(p") (3.1)
Now choose 4> 4 (p'). Consider the models (X, A/;, a;), for i=1,.,1—1,

[+ 1,..., n, where the /; are chosen such that

Api+ M,
Ty sl =11+ 1,., 2
D) P I+ n (3.2)

where L:=0,+ --- +/,_,+1,,,+ --- +1,. Some calculations show that
this boils down to the choice /,= p(p,/p;)— p;=0. Next, consider the
superposition of (X, 4, p') and (X, Al;,a,), i=1,..,/—1, [+ 1,.., n, to obtain
a model equivalent in law to (X, A(1+ L), p). [To see that the radius
random variable in this superposition is p, just use (3.2).] Since 1> 1.(p"),
the superposition is certainly supercritical. Hence

A1+ L)y>4.(p)
The above inequality holds for all 1> A(p'), so we have
Ap )1+ L)=A(p)

From (3.2) and some elementary calculations one shows that L=
(p)~"(p;,— p)) and the result follows, using that A(p')<1.(a,). For the
case p;< p;, we just reverse the roles of p and p". |l

822/75/1-2-9
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Lemma 3.2. let0<a,< --- <a,, and let p be a random variable
taking value a; with probability p,. Suppose that p,>0. For all k=1, 2,..,,
define the random variables p, taking values a; with probability p, ,, for all
i=1,.,n If p,,— p,for all i when k — oo, then 4.(p,)— A.(p).

Proof. We have assumed that p,>0, so we can pick 0<d<p,.
Take k, so large that 3"~ | p.,— pil <39, for all k > ky. Then, of course,

i=1
we have p, ,> 16, for all k > k. For I=1,.,n—1 and k >k, let £\ be the
random variable defined by

Di.i for i=1,.,1

PV =a;)= pi / for i=I+1,.,n-1

Pnt Z (Pi— Pr.d) for i=n

i=1

Clearly, £7~" has the same distribution as p, and we define ' := p.
According to Lemma 3.1, for /=1,.., n— 1, we have

128 = A& <2871 A (a)) | pr— prl

Adding the previous inequalities over all / and using the triangle inequality,
we obtain

n-—1
|4lpi) = 2p) <267 "2 (a)) 3 1pi— pil
/=1
for all k£ = k,. This proves the lemma. ||
Next we drop the assumption that p, should be positive:

Lemma 3.3. Let p take values 0 <a; < --- <a, with probabilities
D1 DPa» Tespectively. Suppose p, takes values a,,.., a, with probabilities
Dictses Piene I pri— p; for all 1 <i<n then 4.(p,)— A.(p).

Proof. In view of Lemma 3.2, we need to prove this lemma for the
case when there exists 1 <m<n—1 such that

pm>0 and pm+l='”=pn=0 (33)

First we show that it suffices to prove the lemma for the case
m=n—1. Indeed, if £ and &/ take values q,,..., a, with probabilities

pk.l s pk.Z’"" pk,nn 0’---’ 0’ Z pk.i

i=m+1
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and

pk.l L] pk.Z""’ pk.m, Z pk,7 0,"'1 0

i=m+1

respectively, then we clearly have
A (&)< A (pp) < ALEK)

So it suffices to show that A.(p,) converges to i.(p) when the p, take
at most one value larger than g, with positive probability. Thus we
henceforth assume that m=n—1, ie.,, p,_,; >0 and p,=0.

Next let p, be a random variable taking values a,.., a, with
probabilities p,, Pass Puc25Phn—1s Pr.n» T€SpPectively, where pi,_,:=
Pn_1— Pena=0 for k large enough, since p,_ >0 and p;,—0 when
k- .

We shall now prove

Jim 2(pi)=ALp) (34)

From our choice of pj,, we observe that
}n(p;\) S )»((p)

So to prove (3.4) we need to show that lim inf, _ . A.{p;) = A.(p).
Suppose there exists a 4 such that liminf, _, . 4.(p;) <A< 1.(p). Since
i< A[p), by (2.2), and for x as in Lemma 2.1, we can find an N such that

o((N,3N), 4, p) < ik (3.5)

Now we shall construct some processes so as to yield with (X, 4, p) a
superposed model which has p; as the governing radius random variable.
For this, we choose I, |,.... lx ,_», I, to satisfy the following reiations:

pitlei _

3L, ; for i=1,.,n=2

and

[k.n _
1+Lk_pk.n

where L, =1[, ,+ --- +I,_,+/,,. Since calculations show that this boils
down to

1/\-,,-=<Mu-—l> p;i=0  for i=1l.,n—=2
Pron—1

822/75/1-2- 9*
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and

Clearly, for every i=1,..n—2 and i=n, I, ;>0 when k — co. Thus, we
can choose k large enough such that for all i=1,.., n—2 and i =n, we have

1
P, (there is at least one point of Xin [-R, N+ R]1x [-R, 3N+ R])< P K
(3.6)

where x is as chosen before.

We define A :=2/,,+ 3722 A, ;. Clearly, the superposition of the
processes (X, 4, p), (X, A/, ;, a;) for all i=1,..,n—2 and i=n is equivalent
in law to the process (X, 4+ 4, p;). For k large enough we obtain from
(3.5) and (3.6) that o((N,3N), A+ 4,,p)<k, and thus it follows from
Lemma 2.1 that the superposed model is subcritical. However, by the
choice of 4, (X, 4, p;) is supercritical, hence so is (X, 4 + A;, p)), which is
the desired contradiction.

Finally, to complete the proof of the lemma, we construct ¢\’ as in
previous lemma, where £}~ " has the same distribution as p, and £’ = p}.
This method shows that

n—2

[Adpr)— Al <2(p, - 1)_l ila,) Z | Pri— pil

i=1
and the lemma follows. ||

Now we are in a position to prove Theorem 1.2. First we suppose that
the supports of both p and p,, k=1, 2,..., are concentrated in an interval
[a, R], where a > 0. The distribution function of p is denoted by F, and the
distribution function of p, by F,. We can assume that both a and R are
continuity points of F. Take a sequence {n,} of partitions of [a, R], which
we write as n, = {a=yg<y| < --- <y} = R}. The partitions are chosen in
such a way that =, refines n,, all points y} are continuity points of F,
and such that |r,| :=max, o, < {77 —77_,} =0, when n - oo. Now define,
for all n> 1, the random variables p"' and p,,, defined by the requirement
that if pe (y7_,, v/, then p"" =y7 and p,,=7y"_,. It follows from a simple
coupling argument that 2 (p"') < 1.(p) <A (pm) < Aa). Also, it is easy to
see that A.(p") in increasing and 4.(p,,) is decreasing in n. Now write

7l
I<iska Y7y a

o, = max ——<1+
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which tends to 1 when n tends to infinity. Hence p < a,,p,,,,, which implies
that l(‘(p(")) P Ac(anp(n)) = a,,"li(.(p(,,,). Hence

A(p) <A (p) S andlp™)

We can now write

d
Adp)—A(p") < [(1 + ln—') - 1] A(p™)

a
|nM| d
g[(l +T) - 1] Ala)=:B,, say 3.7

The whole caiculation can also be done for p, instead of p and we obtain,
in the obvious notation,

Ac(Pk)—}n-(Pﬁ(m)sﬂn (38)

Now choose an ¢>0 and take n so large that f§, <e. Observe that p'
takes the value y7 with probability F(y7)— F(y7_,) and p}" takes the value
y¥ with probability F,(y?)— F,(y_,). Hence by the choice of the partitions,
the fact that p, = p, and Lemma 3.3, we see that |1 (p") —1.(p{)| < 3¢,
for k sufficiently large. Together with (3.7) and (3.8) this proves the
theorem in this case.

Next we drop the assumption that the supports are bounded from
below by some positive number. Let >0 be a continuity point of
F and let n>0 be such that P, (p>d)>n. Since p,=p, we have
P; ,\p.>08)>n for k sufficiently large. Certainly, if (X, n4, 8) is super-
critical, so is (X, 4, p,) and it follows that if nA > 1.(8), then 1> 1 _(p,), or

1
Alpr) € 5 £9) (39)

Now let £ >0 and choose a to be a continuity point of F such that F(a) <,
and choose k, so large that F (a)<¢ for all k>k,. Let p“ be a random
variable with distribution equal to the conditional distribution of p, given
that p > a. Similarly, let p, be a random variable with distribution equal to
the conditional distribution of p given p <a. Then we have 4. (p?) < 2.(p).

Consider the model (X, 4, p“) and (X, 4/, p“), where [ is chosen such
that /(1 +/)~'=P, ,(p <a). This means that

__Fla)
"1~ F(a)

(3.10)

The superposition of the two models is equivalent in law to (X, (1 +/), p).
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Thus if 1> 4.(p“), then certainly this superposition is supercritical and
hence A(1+1)>A.(p), i.e., A (p“N1+ )= .(p). Hence

3 3 ] @ & b

Ap) = A Lo N <lAAp )<m/~c(p) (3.11)
where we have used (3.10). In the same way we find, in the obvious
notation and using (3.9),

12404) = 2P <= A(p) <ﬁ 2.(8) (3.12)

]

When p, = p, then also pi{=p“ and from the case already proved we
conclude that

Adpf) = i(p*)l <& (3.13)

for k large enough. The result now follows from combining
(3.11)-(3.13). 1§
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