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We establish, using mathematically rigorous methods, that the critical covered 
volume fraction (CVF) for a continuum percolation model with overlapping 
balls of random sizes is not a universal constant independent of the distribution 
of the size of the balls. In addition, we show that the critical CVF is a 
continuous function of the distribution of the radius random variable, in the 
sense that if a sequence of random variables converges weakly to some random 
variable, then the critical CVF based on these random variables converges to 
the critical CVF of the limiting random variable. 
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intensity; covered volume fraction. 

1. I N T R O D U C T I O N  A N D  RESULTS 

In  the l i terature  on  c o n t i n u u m  percola t ion,  two related parameters  have 
been studied. The  first is the covered volume fract ion (CVF) ,  which has 
been s tudied pr imar i ly  by physicists (Scher and  Zal len,  ~1~ Pike and  
Seager, (8~ Kerse tz  an d  Vicsek, 141 Gawl insk i  a nd  Redner ,  c~ P han i  and  
DharlV~), while the o ther  is the intensity of the unde r ly ing  poin t  process, 
s tudied pr imar i ly  by ma thema t i c i ans  (Hall ,  121 Mensh ikov ,  ~6~ Roy~9~). The  

results ob t a ined  in the first set of work is l imited in that  the results are 
pr imar i ly  based on  M o n t e  Car lo  s imula t ions ,  while the lat ter  set of work 
is l imited in that  the results p r imar i ly  per ta in  to the existence of the 
perco la t ing  regime in a set t ing where the balls are r a n d o m  but  of a given 
fixed d i s t r ibu t ion .  In  this paper  we shall  be concerned  with two aspects of 
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the CVF at criticality. First, we settle a question raised in the first set of 
work regarding the universality of the critical CVF by methods established 
in the second set of work. Second, we obtain a continuity result concerning 
the critical CVF when the radii converge weakly. 

The model of continuum percolation consists of overlapping d-dimen- 
sional balls each of which are of random radius and are centred in a 
'uniform manner'  on Rd; more precisely, for every i =  1, 2 ..... each point xi 
of a Poisson point process X of intensity 2 on R d in the center of a ball 
S(xi, pi) of radius p;, where p , ,  P2 .... is an independent and identically 
distributed sequence of random variables which are all independent of the 
underlying Poisson process. Let p denote a random variable whose dis- 
tribution is independent of X and {p~, i>~ 1 } and is identical to that of p~. 
We denote this model by the triple (X, 2, p). The probability measure 
governing this process will be denoted by P;..p and E~.., is the corre- 
sponding expectation operator. The part of the space which is covered by 
at least one ball will be denoted by C and the uncovered (vacant) part 
by V. 

In a realization of this model let x, ..... x,, be all the points in the unit 
box [0, 1 ]d and r, ..... r ,  the associated radii of these balls at these points. 
Consider the quantity ~ , ~ , ,  nar d, where rc a denotes the d-dimensional 
volume of a ball of unit radius. This corresponds to the sum of the volumes 
of each of the balls centered in the box 1-0, 1] d. It can be easily seen that 
the expected sum of the volumes of each of the balls centered in the unit 
box [0, 1] d is 2rtdE~..pp a. This quantity is called the volume density of 
(X, 2, p). By the invariance properties of the model it is obvious that the 
volume density is unaffected if instead of [0, I ]d we chose a different unit 
box in R d. The CVF is the quantity 1--exp(--27tdE;..,pd), which 
corresponds to the expected volume in a unit box covered by balls (see 
Hall, 13~ p. 128). A simple argument using the ergodic theorem yields that if 
B,, is the box [ - n ,  n] ~, the limit 

1 
,lirn (--~n)a vol(B,, n C) 

exists and is equal to 1-exp(--27ZdEapp a) = CVF, where vol(A) denotes 
the d-dimensional volume of a region A ~ flU. 

Note that if the radius random variable p is such that E;..ppd= ~ ,  
then for every 2 > 0, the CVF equals 1. As such the whole space is covered 
in this case. To rule out such instances and to be able apply the known 
mathematical results of this model we restrict ourselves to the case where 
p has bounded support. 

For x~  R d, let C(x), the cluster of x, denote the connected component 
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of C which contains x. The cluster of the origin is denoted by C(0) and for 
A ~ R d, C(A)  denotes the union of all components  in C which intersect A. 
Clearly, for a fixed p, if 2 ~ ~< 22 then 

P;+p(C(O) is unbounded)  ~< P~.2.p(C(O) is unbounded)  

This allows us to define the critical intensity as 

2,.(p) := inf{2: P~..,(C(O) is unbounded)  > 0 } 

The critical volume density and the critical C V F  are defined as 
2,.rtdE;.c.pp d and A,.(p) := 1 -exp(--2, .naE;. , . .ppd),  respectively. 

It is obvious that  if p~ and P2 are such that p ~ - r j  and p 2 - r 2  for 
some fixed reals 0 < r~ < r 2 < ~ ,  we have 

)-~(rl) :=2c(pl)>~2,.(p2)=: J.c(r2) 

In addition, a simple rescaling argument  (Zuev and Sidorenko ~ J )  yields 

2,.(r,)r a =  2,.(r2)r a (1.1) 

Clearly, (1.1) implies that 

A~(rl) := A,.(pl) = A,.(p2) =: A,.(r2) =:  A,. (say) (1.2) 

The equality in (1.2) suggested the conjecture (Kersetz and Vicsek 141) that, 
for all r andom variables p with bounded support ,  A,.(p) is a constant 
independent of p. Phani and Dha r  tTJ gave a heuristic argument  which 
showed that  the conjecture is false, and supported their a rgument  with 
Monte  Carlo simulations. 

In this paper  we prove the following: 

Theorem 1.1.  There exists a r andom variable p taking values a and 
b with probabil i ty p and I - p ,  respectively, where a ~ b, a > O, b > O, and 
0 < p < 1 such that  

A ~ ( p ) > A c  (1.3) 

denotes the critical CVF of a model  with balls of where, as in (1.2), A c 
fixed radius. 

Our  second result is concerned with the continuity of A,.(pk) when the 
sequence {Pk } converges weakly: 

Theorem 1.2. Let Pk and p be r andom variables such that  for some 
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R > 0 we have 0 ~< p ~< R and 0 ~< Pk <~ R a.s. for all k/> 1. If Pk =~ P, then 
A,.(pk)-* A,.(p), where ':=,' denotes weak convergence. 

In combination with Theorem 1.1, this result shows that for a whole 
class of distributions of p, inequality (1.3) is valid. Also, it states that 
simulation methods cannot distinguish between two models very 'close' to 
each other. In Section 3 we obtain further results on bounds on the rate of 
convergence of the critical intensities. 

Our proof of Theorem 1.1 in Section 2 strongly suggests that whenever 
p is not a constant a.s., then Ac(p)> A,.. However, we do not have a proof 
of this inequality. 

Finally, denote the critical volume density of a model with fixed-size 
balls by VD,.. Our proof of Theorem 1.1 also shows that for any e > 0 ,  it 
is possible to construct a model such tha't the critical volume density of this 
model is between 2 VDc-  e and 2 VD,.. This justifies a claim made by Phani 
and Dhar/71 

For ease of description we present the proofs in the two-dimensional 
case; all our arguments, however, are valid in a higher-dimensional setting. 

2. PROOF OF T H E O R E M  1.1 

Let 0 < r~ < r 2 < ~ be arbitrary positive numbers. Fix, e, & > 0 such 
that 

(2--  e -  6 )A , . -  (1 - e ) (1  --6)A~>A,.  (2.1) 

The expression in (2.1) will become clear in a moment. Next we choose 
2,<).c(r2) such that the CVF of (X, 22, r2) is equal to (1 -e )A, . .  Also 
choose 21 < 2,.(r l) such that the CVF of (X, 2~, r~)= ( 1 -  6)At. Note that 
both processes are subcritical. Next we consider the superposition of these 
processes. We claim that the CVF of this superposition is strictly larger 
than A,.. To see this, note that it follows from Fubini's theorem and the 
ergodic theorem that the CVF of a process is equal to the probability that 
the origin (or any other point, for that matter) is covered. But by inde- 
pendence, the probability that the origin is covered in the superposition of 
the two processes is just the left-hand side of (2.1) and the claim follows. 

Now consider the process (X, 2~, rj) and scale it by a factor ~ <  1 to 
obtain a process which is equivalent in law to (X, cc-22~, ~r~). In other 
words, if the occurrences of (X, 21,r~) are the points {x~,x2,...}, with 
associated balls of radius r~, then the occurrences of the scaled model are 
the points {c~x,, ~x2 .... } with associated balls of radius ~rn. (Note that in 
this way we couple all processes together for ~ < 1 . )  The CVF of 
(X, ~-22~, ~r,) does not depend on ~. Hence it follows from (2.1) and the 
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reasoning above that the CVF of the superposition of (X, 2,_, r2) and 
(X, ~--'2~, ctr~) is strictly larger than A,.. Our goal now is to show that this 
superposition is subcritical for ~ sufficiently small. 

We need to review some notions from the literature. First, we define 
crossing probabilities. For k~, k2 > 0, let a((k~, k2), 2, p) be the probability 
- -under  the law P;.p--that the set ([0, k l ]  x [0, k 2 ] ) n  C contains a con- 
nected component which intersects both {0} x [0, k2] and {kt } x [0, k,] .  
We call such a component an LR (left-right) occupied crossing. The 
critical intensity corresponding to crossing probabilities is defined as 

2s(p)=inf{2; lim sup a((n, 3n), 2, p)>O} 
n 4 o 9  

It is shown in Menshikov 16~ (see also Roy t91) that if p has bounded 
support, then 

2s(p)=2c(p)  (2.2) 

Furthermore, the following result is a special case of Lemma 3.2 in Roylg): 

I . emma 2.1. Consider the model (X, 2, p), where O<p<~R a.s. 
for some R > 0 .  If for some N>>.R and h:<(25e) -121/4, we have 
a((N, 3N), 2, p) ~< ~:, then 

P;.w(d(C(O)) >1 b) <~ Ct e - c,.h 

for all b > 0, where C~ and C2 are positive constants independent of b and 
where d(.) denotes the diameter of a set. 

Remark. For arbitrary dimension d we need to have 
a((N, 3N, 3N, .... 3N), 2, p) ~< x and K < (l/2d)(Sde)-l 'd for the conclusion 
of the above lemma to be valid. Here a((N, 3N, 3N, .... 3N),2, p) 
is the obvious notation for the crossing probability of the rectangle 
[0, N] • [0, 3N] • ... • [0, 3N] in the shortest direction. 

All these notions were originally defined in discrete percolation. 
For an account of that, we refer to KestenJ 5) The results above are the 
continuous analogs of these results in discrete percolation. 

Now we fix a K > 0  as in Lemma2.1. Since 22<2,(r2), (2.2) implies 
that 22 < 2s(r2) and we can thus find a number N so large that 

a((N, 3N), 22, r2) < IK 

If there is no occupied LR crossing in [0, N ] x  [0 ,3N] ,  then there 
is a vacant TB crossing (TB stands for top to bottom) defined in 
the obvious way. In other words, there is at least one component in 
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([0, N] x [0, 3N])c~ V intersecting the top and bottom sides of the rec- 
tangle, where V is the uncovered region as introduced earlier. We can order 
these components from left to right, say, and the leftmost component is 
called IV. Only finitely many balls intersect [0, N] x [0, 3N] a.s. and 
hence the boundary O W of W has only finitely many components a.s. 
Hence, for n large enough, the event E,, := { W exists and all components 
of OWc~ int([0, N ] x  [0, 3N]) have distance at least n-~ from each other} 

" We fix no such that has probability at least 1 -5K.  

p~. , . r : te , ,  0) > 1 - �89 (2 .3)  

Next we turn again to (1", 21, r~). Since 2~ <2,.(rl), it follows from (2.2), 
Lemma 2.1, and an application of the FKG inequality that for 
Bi = [ - -  1, 1 ]  2 , 

P;.,.r,(d(C(BI )) >1 b) <<. C3e-  c~b 

for all b > O, where C 3 and C4 are again positive constants independent 
of b. Scaling down by a factor ~ < 1 yields 

P:,-2;.,.:,r,(d(C(B~)) >~ c~b) <~ C3e-c4b 

where B = = [ - c c ,  c~] 2. Taking a = m  -~ for some large integer m, and 
b =  (2cmo)-* [with no as in (2. 3)3, we obtain 

p,,,>.,.,,,_~rt(d(C(B,,_l)) >t (2no) l) <~ C3e-C~176 (2.4) 

Now we combine the conclusions obtained in (2.3) and (2.4). Divide 
[0, N] x [0, 3N] into 3NZrn "- boxes with side length m-*, and denote these 
boxes by B t, B 2 ..... B 3N'-m'. Then, from (2.4), the probability that in the 
model (X, m2).~, m-~r~) the event 

3 N2tt) 2 

F;;~:= U {a(c(B'))>~(2no)-'} 
i = 1  

occurs has probability at most 3N2m2C3e -c""'/z'~ which tends to zero for 
m --* o0. We now fix an m 0 such that this probability is at most �89 If E,o 

too), j, molr l ) ,  then it occurs in (X, 22, r2) and F,,~ ~ does not occur in (X, 2 
follows that there is no occupied LR crossing in [0, N] x [0, 3N] in the 
superposition of the two processes. This superposition is in fact the model 
(X, 22 + mg),~, p), where p is a random variable taking values r2 and rn 0 Ir, 
with probability 22(mo21 + 22)- 1 and mo22,(mo2;tl + 22)-1, respectively. 
Hence, the probability of an occupied LR crossing of [0, N] x [0, 3N] in 
(X, 2 2 + m o 2 , , p )  is at most � 8 9  According to Lemma2.1, this 
implies that this model is subcritical and this proves the theorem. II 
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3. PROOF OF THEOREM 1.2 

If Pk ~ P, then the boundedness of the radii implies that also the 
expected volume of the balls converges. It is therefore enough to prove that 
2,.(p~) --* 2,.(p), when k ---, ~ and this is what  we shall prove. 

Our  strategy will be to approximate  the radii by radii which take only 
finitely many  values. Thus we first investigate the case in which both p,, and 
p take only finitely many  values. 

k e m m a  3.1.  Let 0 < a ~ < a 2 < - . .  < a , , < o o  and let p and p '  be 
random variables taking value a~ with probabil i ty pi and p~, respectively. 
Suppose that  there exist 1 <~j<l<~n such that p~=p; for all i# j ,  l and 
where Pt and p~ are both positive. Then, 

).c(a~) 
[2,.(p) - 2,.(p')l ~< rain{ p/, p;} [pj-  PjI 

Proof. 
shows that 

Suppose first that  pj> p). A simple coupling argument  then 

L(p)~,z,.(p ) (3.1) 

Now choose 2 >  2,.(p'). Consider the models (X, 21i, ai), for i =  1 ..... l - 1 ,  
l +  1 ..... n, where the l~ are chosen such that  

2p; + 21~ 
2(1 + L )  pi '  i = 1  ..... 1 - 1 , / + 1  ..... n (3.2) 

where L : =  1~ + . . .  + lt_ ~ + l~+ ~ + .-. + l,,. Some calculations show that 
this boils down to the choice li=pi(p;/p~)-p;>~O. Next, consider the 
superposit ion of (3(, 2, p ' )  and (X, 21~, a~), i =  1,..., 1 -  1, l +  1 ..... n, to obtain 
a model equivalent in law to (X, 2(I + L ) , p ) .  [-To see that the radius 
random variable in this superposit ion is p, just use (3.2).] Since 2 > 2,.(p'), 
the superposit ion is certainly supercritical. Hence 

2(1 + L ) >  2~(p) 

The above inequality holds for all 2 > 2,.(p'), so we have 

2,.(p')(1 + L) >t 2,.(p) 

From (3.2) and some elementary calculations one shows that L =  
(Pl)- ~ (P j -  Pj) and the result follows, using that  2,.(p ) -.~ 2,.(a l). For  the 
case pj < pj, we just reverse the roles of p and p'. 1 

822/75/1-2-9 
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L e m m a  3.2 .  Let 0 < a~ < . . .  < a,,, and let p be a r andom variable 
taking value ai with probabi l i ty  p;. Suppose that  p,, > 0. F o r  all k = 1, 2 ..... 
define the random variables Pk taking values a; with probabi l i ty  Pk.~, for all 
i =  1 ..... n. If Pk.i-*Pi for all / w h e n  k--* ~ ,  then 2 , . ( pk )~  2,.(p). 

Proof. We have assumed that  p,, > 0, so we can pick 0 < 6 < p,,. 
Take  ko so large that  ~;=~x-'"- ~ tPk.i-PA < �89 for all k >/ko. Then, of course, 
we have Pk.,, > �89 for all k t> ko. F o r  / = 1 ..... n - 1 and k >/ko let ~11 be the 
r andom variable defined by 

I p~.i for i =  1 ..... 1 

p ( ~ l )  = ai ) = ~P~ i for i =  l +  1 ..... n -  1 

P,,+ ~ (Pi--Pk..i) for i = n  
i=1 

Clearly, ~ " -  ~ has the same dis t r ibut ion  as Pk and we define ~ol  :=  p. 
According to Lemma 3.1, for l= 1 ..... n -  1, we have 

I;t~(~ t~) - 2,.(~ ~- '~)l ~< 26 - '  2,.(a, ) I P , -  Pk.A 

Adding the previous inequalit ies over all l and using the tr iangle inequali ty,  
we obta in  

n - -  1 

12,.(pk)-- 2,.(p)l <~ 26- '  2,.(a~) ~ IP,-- Pk.A 
I=1 

for all k >/k o. This proves the lemma. I 

Next  we drop  the assumpt ion  that  p,, should be positive: 

k e m m a  3.3 .  Let p take values 0 < a~ < . . -  < a,, with probabi l i t ies  
p~ ..... p,,, respectively. Suppose Pk takes values a, ..... a,, with probabi l i t ies  
Pk, l ..... Pk.n. If Pk, i-'+ pi for all 1 <~i<~n then 2,.(pk)-+ 2,.(p ). 

Proof. In view of Lemma 3.2, we need to prove this lemma for the 
case when there exists 1 ~< m ~< n -  1 such that  

p, ,>O and P,,+I . . . . .  p , = 0  (3.3) 

First  we show that  it suffices to prove the iemma for the case 
m = n -  1. Indeed, if r and ~k' take values al  ..... a ,  with probabi l i t ies  

P k . , ,  Pk.2 ..... Pk .... 0 ..... O, ~ Pk.i  
i = m +  1 
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and 

P k . l ,  Pk.2 ..... Pk  ..... ~ Pk, ,  0 ..... 0 
i=m+ 1 

respectively, then we clearly have 

2,.(~'k) <~ 2,.(pk) ~ 2,.(~'k') 

So it suffices to show that 2,.(pk) converges to 2,.(p) when the Pk take 
at most one value larger than a,, w i th  posit ive probabi l i ty .  Thus we 
henceforth assume that m = n - 1, i.e., p , _  ~ > 0 and p,, = O. 

Next  let p~. be a random variable taking values at ..... a, w i th  
probabi l i t ies P~,P2 ..... P,,-2,P'k .... I , P k  .... respectively, where p~. .... t : =  
P,,-  ~ - Pk.,, >1 0 for k large enough, since p , _  ~ > 0 and Pk., "-' 0 when 
k --~ oo. 

We shall now prove 

l im 2,.(p'k) = 2c(p) (3.4) 
k ~ c r .  

From our choice of p~., we observe that 

2,(p~.) ~< 2,.(p ) 

So to prove (3.4) we need to show that l im i n f k _ ~  2,.(p'k)>~2,.(p). 
Suppose there exists a 2 such that l im in fk_ ~_ 2,.(p~.)< 2 < ).,.(p). Since 

2 < 2,.(p), by (2.2), and for k" as in Lemma 2.1, we can f ind an N such that 

a ( ( N ,  3N), 2, p) < �89 (3.5) 

Now we shall construct some processes so as to yield with (X, 2, p) a 
superposed model which has p~. as the governing radius t 'andom variable. 
For  this, we choose lk.~ ..... lk . . . .  2, l ,  to satisfy the following relations: 

Pi  "+" lk, i p~ for i =  1 ..... n -  2 
1 + L k  

and 

k, tl 
= Pk.n 

1 + L k  

where L k  = lk. t  + "'" + lk . . . .  Z + l k . , .  Since calculations show that this boils 
down to 

( ' )  lki= P, , - •  . . . .  i p~>~O for i = 1  ..... n - 2  
' P ~ -  . . . .  I 

822/75/1-2- 9* 
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and 

lk ,  n = P . -  l 
P'k . . . .  l P k ' n > ~ O  

Clearly, for every i =  1 ..... n -  2 and i =  n, l k j - *  0 when k ~ oo. Thus,  we 
can choose k large enough such that for all i = l ..... n - 2 and i = n, we have 

1 
P;.t~ ,(there is at least one point of X in I - R ,  N + R]  x I - R ,  3 N +  R-I) < ~ K 

(3.6) 

where x is as chosen before. 
We define ),k := ),lk.,, , ,- 2 ' -I-~,i= I ")'lk, i" Clearly, the superposit ion of the 

processes (X, ,;,, p), (X, 21,.i, ai) for all i = 1,..., n - 2 and i = n is equivalent 
in law to the process (X,), +).~., p~.). For  k large enough we obtain from 
(3.5) and (3.6) that a((N, 3N), 2+2~:,  p ) < x ,  and thus it follows from 
Lemma2.1  that the superposed model is subcritical. However,  by the 
choice of 2, (X, 2, p~) is supercritical, hence so is (X,). + ).~., p~.), which is 
the desired contradiction. 

Finally, to complete the proof  of the lemma, we construct  ~ )  as in 
previous lemma, where ;~("- i) has the same distribution as Pk and ~ o ) =  p~.. %k 

This method shows that 

n - -  2 

12c(Pk)--'~c(P'k)l <~2(P,,-~) -~ 2,.(a)) ~ IPk.,--P,I 
i = 1  

and the lemma follows, l 

Now we are in a position to prove Theorem 1.2. First we suppose that 
the supports  of both p and Pk, k = 1, 2 ..... are concentrated in an interval 
[a, R],  where a > 0. The distribution function of p is denoted by F, and the 
distribution function of Pk by Fk. We can assume that both a and R are 
continuity points of F. Take  a sequence {rt,,} of parti t ions of [a, R] ,  which 

I1 tl - -  we write as •,,= { a = ~ ' o < ~ ' 7  < " <~ 'ko - -R) .  The parti t ions are chosen in 
such a way that n,,+ ~ refines rt,,, all points y',.' are continuity points of F, 

( ~1 n II and such that I~,,I := m a x ~ o  ; -Y~_~} --*0, when n ~  ~ .  Now define, 
for all n >~ 1, the random variables p(") and p(,,) defined by the requirement 
that if p ~ (~,'/_ ~, y'/], then p(") = y7 and p~,,) = y'/_ ~. It follows from a simple 
coupling argument  that 2,(p ~'~) ~< 2,.(p) <~ 2,(p(,,)) -%< ,~c(a). Also, it is easy to 
see that 2,(p ~'~) in increasing and ).,.(p(,,)) is decreasing in n. Now write 

y'~ I~,,I ct,,:= max ~ < 1 + - -  
1 < ~ i < ~ k n  ) l i _  1 a 
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which tends to 1 when n tends to infinity. Hence p(,,I < ct,,p~,~, which implies 
that 2,.(p {'1) >1 2~(0t,,pt,i) = ct,Ta 2,.(p{,i). Hence 

2c(p ''~) ~< 24p)  ~< ~.c(p~"~) 

We can now write 

2r 2r I ( 1  + [~_~)a_ 1]2c(p")  

.<[(, ,] ==,,,, say (3.7) 

The whole calculation can also be done for Pk instead of p and we obtain, 
in the obvious notation, 

' ~ c ( P k )  " "  ( " ~  --ZAPk J<<.~,, (3.8) 

Now choose an e > 0 and take n so large that /~,,< e. Observe that pl"~ 
takes the value ?'i' with probability F(y'/) - F(V'/_ t) and p~."~ takes the value 

II I |  i i1  •i with probability F k ( ) '  i ) - -  Fk(~ ~_ l). Hence by the choice of the partitions, 
the fact that Pk =:" P, and Lemma 3.3, we see that 12,.(p "1) i,, - 2 , (P,  )l < 3e, 
for k sufficiently large. Together  with (3.7) and (3.8) this proves the 
theorem in this case. 

Next we drop the assumption that the supports are bounded from 
below by some positive number. Let 6 > 0  be a continuity point of 
F and let q > 0  be such that P;.,,(p>6)>q. Since pk=.p, we have 
P;..pk(Pk > 6 ) >  q for k sufficiently large. Certainly, if (X, r/2, 6) is super- 
critical, so is (X, 2, Pk) and it follows that if q2 > 2,(6), then 2 > 2,.(pk), or 

2,.(p,) <1 2,.(6) (3.9) 
q 

Now let e > 0 and choose a to be a continuity point of F such that F(a) < e, 
and choose ko so large that F,(a)< s for all k/> ko. Let p~ be a random 
variable with distribution equal to the conditional distribution of p, given 
that p 1> a. Similarly, let p,, be a random variable with distribution equal to 
the conditional distribution of p given p < a. Then we have 2,.(p")<~ 2,.(p). 

Consider the model (X, 2, p~) and (At, 2/, pU), where l is chosen such 
that 1(1 + l ) - t =  P;.,p(p <~a). This means that 

F(a) 
l = - -  (3.10) 

1 - F ( a )  

The superposition of the two models is equivalent in law to (X, 2(1 + 1), p). 
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Thus  if 2 > 2 , . ( p " ) ,  then cer ta in ly  this superpos i t ion  is supercr i t ica l  and 

hence 2(1 + l ) > 2 c ( p ) ,  i.e., 2,.(pU)(1 +l)>~)~,.(p). H e n c e  

12 , . (p ) -2 , . (p ' ) l  <.12,.(p")<~ 2c(p) (3.11) 
1 - ~  

where we have used (3.10). In the same way we find, in the obvious 
notat ion and using (3.9), 

12,.(p,) - L.(pDI ~< ~ ).,.(p,) ~ ~1(1- g) 2,.(~) (3.12) 

W h e n  P k ~ P ,  then also p ~ p "  and f rom the case a l ready  p roved  we 
conc lude  that  

�9 a * d I z , . ( p , ) - x ( p  )l < e  (3.13) 

for k large enough.  The  result  n o w  fol lows f rom c o m b i n i n g  
(3.11)-(3.13).  I 
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